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\%' 
ABSTRACT 

An approximate analytical solution i s  obtained for 
the temperature distribution in  an absorbing gas layer 
bounded by two flat surfaces radiating at different tem- 
peratures. The corresponding expression for the net 
radiation exchange between the two surfaces is derived 
and numerical solutions obtained for gas layers up to 10 
optical thicknesses in depth. Similar results are derived 
for the special case of a gas layer at uniform temperature, 
and the net radiation exchange in this system is found to 
agree well with that in the previous for gas layers less  
than two optical thicknesses i n  depth. 

1. INTRODUCTION 

A problem in radiative transfer of increasing importance to the calculation of the thermal balance in 

high-temperature propulsion devices is the net radiation exchange between two surfaces a t  different tem- 

peratures separated by an absorbing gas. Various specialized aspects  of this  general problem have received 

the attention of investigators from time to time during the past  century. Some of the methods used in these 

analyses have been summarized by Jakob (1). Of particular interest  are the analytical methods of Wohlenberg 

(2) and Christianson (3) for obtaining the net radiative transfer in systems wherein the absorbing gas  is at a 

uniform temperature. More recently, the detailed problem of determining the steady-state temperature distribu- 

tion in the gas, as well as the net  energy transfer, has been trexted by Usiskin and Sparrow (4) who obtained 

numerical integrations of the appropriate integral equations. 
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The present treatment examines some of these same aspects  of the problem by means of a dual 

approach. In the first portion of the analysis, the methods of Wohlenberg and Christianson are combined so 

a s  to handle the case of two grey surfaces separated by an absorbing gas a t  uniform temperature. In the 

second portion, the problem considered by Usiskin and Sparrow is reviewed, and an approximate analytical 

solution is derived which yields closed-form expressions for the temperature distribution in the gas and the 

net radiative transfer across the system in terms of the relevant physical parameters. 
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II. ABSORBING GAS AT UNIFORM TEMPERATURE 

The problem considered here is that of determining the radiation exchange between two flat grey 

surfaces separated by an absorbing gas  a t  uniform temperature. The absolute temperature of one surface is 

T ,  and of the other, T,, where T ,  > T,. It is further specified that the surface at temperature Ti has 

emissivity ei, and that this is equal to its absorptivity. The gas has absorptivity ai to the radiation emitted 

from the surface a t  temperature Ti. The radiation balance relations are  stated in terms of three fundamental 

quanti ties : 

W i  = D ei 7'4 = grey-body radiation (energy/area) from surface a t  temperature T i ;  
u is the Stephan - Boltzmann constant. 

W. .  = radiation/area from medium i absorbed by medium j .  
'1  

qi,i I direct radiative transfer/area between media i and j .  

A. Radiation from Gas 

The first s tep in the analysis  is the derivation of an expression for the radiation from the gas. For 

this purpose we require such quantities a s  W 

wall a t  temperature T,. The quantity W consis ts  of two parts, that portion of the gas  radiation which goes 

directly to wall 2, and that which goes first to wall 1 and, after reflection, is eventually absorbed by wall 2. 

The application of Christianson's method of multiple reflections yields for the former: 

the radiation emitted by the gas which is absorbed by the 
g2' 

g2 

where 



JPL Technical Report No. 32-197 I 

is the fraction of the radiation leaving either solid surface which is reflected once by each; the l a s t  equality 

in the above equation follows by virtue of the fact that T <  1. By applying this approach a l so  to the 

radiation component which goes first  to wall 1, is reflected and subsequently absorbed by wall 2, one obtains 

Adding these expressions yields W g 2 :  

€2 w g  wg2 = ___ [l + (1 - E 1 ) ( l  - U l ) l  

1 -7 )  

A related quantity of interest is W the radiation emitted by wall 2 which is ultimately absorbed 
2g’ 

by the gas. By a similar line of reasoning to that applied above, i t  is easily shown that 

It is of interest to mention that the radiation emitted by wall 2 and subsequently reabsorbed, W,,, is given by 

w 2 2  = 
1 - 7 )  

(7) 

and, of course, 

(8)  2g 
w, = w 2 2 +  w 2 1 +  w 

Corresponding expressions for W and W l g  are obtained by simply exchanging indices in the above 
g l  

relations. 
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An explicit solution for W (which yields the equilibrium temperature of the gas in this  system) i s  
g 

obtained by requiring that the ne t  radiation passing from wall 1 to gas is equal to that from gas  to wall 2. 

Using the notation of definition (3), the latter is given by 

and the former by -q  

steady state, 

which may be obtained immediately from (9) by exchanging indices. Now, a t  
g , l *  

from which follows 

6. Not Radiation from Wall 1 plus Gas to Wall 2 

The combined net  radiation from wall 1 and gas to wall 2 is given by 

5 
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where W and W,, are obtained from Eqs. (5) and (6), and 
€9 

Substitution of these expressions into Eq. (12) yields 

C. Direct Radiative Exchange Between Wall 1 and Wall 2 

The direct radiative exchange between walls 1 and 2 is obtained immediately from results (9) and 

(1 4) ; thus , 

Substitution from Eq. (13) yields 

w, E 2  (1 - c$) - w 2  El (1 - a2) 

4 1 , 2  = 
1-77 

(16) 

6 
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D. Limiting Cases 

Three limiting cases  for the above results are of particular practical importance. 

Consider first the case  when both surfaces are black-body radiators; then E ,  = E ,  = 1. The 

corresponding expression for the radiation from the gas is obtained from Eq. (11). 

1 
2 

wg = - ( 3 W 2  + C p 1 )  

The net  radiation exchange between wall 1 and gas and wall 2 then reduces to 

= (1 - 5 )  w, + wg - w2 41+g,2 

which is in agreement with the result given by Jakob: The substitution of the form (17) into (18) yields 

1 1 
41tg,, = (1 -  - 2 5 )  I, - (1-  - 2 Q2) w, 

Finally, one can also obtain the appropriate result for the ne t  exchange between walls 1 and 2 from (16). 

(17) 

(18) 

(19) 

* R e f .  1, V O ~ .  11, p. 132. 

7 



JPL Technical Report No. 32-197 

The second limiting case of interest  is that of an entirely opaque gas, that  i s ,  3 = a2 = 1. The three 

principal results in this case reduce to 

0 El E2 (T': - T i )  
= E w - w 2  = Q l + g , 2  2 g 

€1 + €2 

(22) 

where the las t  equality is obtained by the application of Eq. (1) and (21). The direct exchange between walls 

1 and 2 is then 

41,2 = O 

a s  expected, since the gas layer completely shields one wall from the other. 

The las t  special case i s  that of a completely transparent gas, that is, 5 = a2 = 0. Then, 

w = o  
g 

(23) 

(24) 

again using Eq. (1). This  las t  expression i s  the familiar form reported in the literature (see Refs. 5 and 6). 

The corresponding expression for q 

cannot influence the energy balance by virtue of i t s  transparency. 

is identical to Eq. (25), as is to be expected, s ince the gas layer 192 

8 
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111. ABSORBING GAS WITH EQUILIBRIUM TEMPERATURE PROFILE 

The simplified physical problem treated in the preceding section is now generalized to  account for 

the presence of the gas  layer as an emitting and absorbing medium whose internal temperature at any local 

station is determined by the net energy exchange with all other radiating elements in the system. In carrying 

out the analysis  we introduce the following simplifying assumptions: (1) the two solid boundaries radiate 

as black bodies; (2) the gas  radiates as a grey body; and (3) hea t  transfer by conduction is negligible. 

An immediate consequence of assumption (2) i s  that the absorption characteristics of the gas  layer 

may be represented by a single coefficient of absorption (i.e., the logarithmic decrement of radiation) which 

is independent of wavelength. For further simplification, we assume that this coefficient i s  a l so  independent 

of temperature. By virtue of assumption (3), the  energy balance in the system may be specified entirely in 

terms of the radiative balance. The appropriate equation is obtained from an analytical statement of the 

energy balance in a differential volume element in the gas and yields a linear integral equation for the 

temperature distribution within the gas. This  equation has  been derived by Usiskin and Sparrow (4) and is 

given as Eq. (15) in the reference paper. 

A. Temperature Distribution 

The purpose of the present section is t o  develop an approximate analytical solution for the 

a a  temperature” (actually radiative power) distribution which involves directly the essent ia l  physical para- 

meters of the system, and subsequently to apply this result to the calculation of the ne t  radiative transfer 

across  the gas  gap. The governing energy balance equation of Usiskin and Sparrow i s  taken over directly 

for this analysis, and it may be shown, upon introducing the generalized exponential integrals and some of 

their properties, that this equation may be written in the following form 

where 0 

quantity 4 K W  ( x ) d x  represents the energy radiated per unit time from a gas  layer of thickness dx and unit 

x 5 1 is the fractional distance across the gas  layer measured from the cold (T,) wall. The 

g 
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crosssec t iona l  area (2). A special  ca se  of W ( x )  i s  the familiar expression 0 T 4 ( x ) ,  where T ( x )  i s  the 

temperature of the gas. The symbol W, is defined as in the preceding analysis. The function S ( x )  represents 

the internal energy sources in  the gas (with uni ts  of power/volume); the parameter K i s  the optical thickness 

of the gas  layer and is  defined K E kL; k is the absorption coefficient of the gas and L is its thickness. The 

En ( x )  are  the generalized exponential integrals; these are defined (7), 

g g g 

e-' ds 

sn 
E" ( x )  = xn-1 J" ___ 

Equation (26) states simply that the power radiated from a unit volume of gas a t  x (the term on the 

left-hand s ide)  is equal, at steady state, to the radiated power it absorbs from all other elements. The first 

term on the right-hand s ide  accounts for the internal sources; the second term gives the portion of the 

radiation emitted by the cold wall which is absorbed by the gas volume, and the third gives that  portion from 

the hot wall. The third and fourth terms account for radiation from the rest of the gas layer which i s  absorbed 

in the unit volume about x.  

This energy balance equation may be considerably simplified by introducing the dimensionless 

function 8 ( x ) :  

The substitution of this function into Eq. (26) yields 

where we have used the resul t  

X I E ,  (s) ds = 1 -E+) 
0 

10 
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In this  analysis attention is focussed on the solution to Eq. (28) for the case  of no internal heat  

sources in the gas; thus, S ( x )  = 0. The resulting equation is in the form of the inhomogeneous Fredholm 

equation of the second kind, and formal solutions can be generated by, for example, a Liouville-Neumann 

ser ies  expansion (8) .  An examination of the numerical results obtained by Usiskin and Sparrow reveals, 

however, that  the “temperature” function O ( x )  has  nearly a linear dependency on x ,  especially for large K. 

Therefore, in constructing our approximate analytical solution we introduce the form 8 (x;  K )  = u ( K )  x + E ( K )  

into the integral as a zeroth-order approximation and calculate the resulting expression for O(z; K )  a t  the 

left. If the assumed linear form is indeed a reasonable first  estimate for O ( x ) ,  then the resulting expression 

from the l e f t  should have the form 

where the correction term R (x ;  K )  will be small. 

For computational purposes, i t  i s  convenient to write the source-free equation in the form 

The application of the procedure mentioned above is straightforward, and leads rather easily t o  the form (29).  

In carrying out this calculation it i s  necessary to impose also two conditions on O ( x )  so that the specification 

of the quantities U ( K )  and c ( K )  is complete. These are 

The first condition i s  a consequence of the antisymmetry property of the function 8 (see Appendix for proof). 

The second condition implies that R ‘ ( 1 / 2 ;  K )  = 0. The substitution of the linear form for 8 into the right-hand 

s ide of Eq. (30) yields the result: 

1 1 

J L  2 

11 
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In performing the calculation the following property of the E ,  ( x )  is required: 

The application of relations (31) yields 

The resulting expression for 8 ( x ;  K )  given in Eq. (29) (see F i g  1) when compared graphically with the 

numerical solution obtained by Usiskin and Sparrow is found to be accurate to l e s s  than a percent. 

The comparison i s  especially good for large K ;  when K > > 1, the expressions for u and c have the asymptotic 

forms: 

1 
C ( K )  .% - 

K 

It  may be observed from the form of the function (29) that further iteration will yield an integral 

equation for the correction term R ( x ;  K ) .  Because of the antisymmetry property of 8, the next-higher-order 

approximation may be constructed by introducing an x 3  term into (29). A continuation of this procedure 

will generate a power ser ies  in odd x which will converge, thereby providing an increasingly accurate 

analytical expression for e. 

B. Net Radiative Transfer 

(34) 

Of practical interest is the calculation of the net radiative transfer between the hot wall and gas 

l + g , 2  
and the cold wall. This corresponds t o  the quantity q determined in the previous section for the case 

12 
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[see Eq. (14) J . Again, the appropriate expression has  been derived by Usiskin and 

I- 
E 
n 

a w 
3 

c 

FRACTIONAL DISTANCE FROM COLD WALL. x 

Fig. 1. Approximate solution for temperature distribution function 

By introducing the En (z) functions and combining various terms, their result may be written in the form 

where 

and q ( K )  is the net energy transferred per unit area and time to the cold wall. I t  i s  easily shown that Q ( K )  

has the following properties: 

l im Q ( K )  = 1 
K - 0  

lim Q ( K )  = 0 
K - 0  

(37) 

13 
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as i s  to be expected on physical grounds. The function Q ( K )  has been computed by Usiskin and Sparrow for 

the interval (0 5 K 

to this  discussion is the comparison of their result with that obtained using the analytical form for 8 

suggested in the preceding section. If one neglects entirely the correction term R,  then direct substitution 

into Eq. (35) yields 

2) using the numerical solution for 8 ( x )  mentioned previously. Of particular interest 

I t  may be shown that th i s  result also satisfies the limits (37). A graphical comparison with the exact 

numerical solution i s  shown in Fig. 2. Evidently the use  of the linear form for 8 yields an estimate for Q 

which agrees to within about 10 percent in the interval (0.1 < K < 1); even better agreement i s  obtained 

outside the interval. 

A final comparison of some practical value may be drawn from the resul t  obtained for the ne t  

radiation exchange Q ( K )  using the relations derived for the uniform temperature gas  system discussed in the 

preceding section. The appropriate expression i s  given in  Eq. (19), which for the present system may be 

written 

II', - w 2  2 

where 3 = u2 = a.  From the definitions of u and k, i t  follows that 

Thus, for the uniform temperature gas, 
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This function is shown in Fig. 2, and the agreement with the variable temperature case  is reasonably good 

up to  two optical thicknesses of gas  layer. 

K' 

a 

W LL 
v) z 
K 
I- 
w 

c 
W z 

IO I 10 
OPTICAL THICKNESS, c 

Fig. 2. Net  radiative transfer to cold wall 

It is interesting to note the difference in the l imi t s  for the two cases  when K + 00. The result for 

the case  with non-uniform gas  temperature was discussed previously [see Eq. (%')I . The result for the 

uniform temperature gas  case  is a lso  explainable on physical grounds. In the limit of a very opaque gas, 

it is to  be expected that the net  radiative transfer to the cold wall will be simply the difference between 

the radiation emitted by the gas  and the cold wall;  thus, one can write immediately 

where W (m) denotes the radiation emitted by an opaque gas  (i.e., u+ 1, K -t w). If the expression (21) is 

used for this  quantity, along with gl = 1, then it follows that Q ( K )  + 1/2 as K + W. 

g 

15 
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APPENDIX. The Antisymmetry Property* of the Function e(x). 

Consider the function e ( x )  which sat i s f ies  the integral equation [cf .  Eq. (3011 

Substitution into Eq. (A-1) yields 

(A-2) 

(A-3) 

(A-4) 

If a new function f(x) +(x) + + (1  - x) i s  introduced, then the addition of Eq. (A-3) and (A-4) reveals that 

f(x) sat i s f ies  the integral equation 

wherein use has been made of the relation 

(A-6) 

*The author is indebted to C. Solloway for assistance in demonstration of this proof. 

16 
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Clearly, f(z) = O is a solution to  Eq. (A-5). This yields the property 

which is in fact the statement of antisymmetry for the function $ ( x ) ;  i.e., + ( x )  is an  antisymmetric function 

of the argument [z - (1/2)]. It is obvious then that O(z) is antisymmetric about the point (1/2, 1/2) in the 

6, z-plane. 

To prove that f(z) = 0 is a unique solution to Ep. (A-s), suppose that there i s  some non-zero 

solution f(z). Then, 

where r < 2, which follows from Eq. (A-6). Furthermore, 

where 4 = r/2 and 0 < 6 < 1. Since this inequality holds for all x ,  i t  follows that 

m a x  
If1 1 4 1 f l  < I f 1  

m a r  m a r  
(A-8) 

which is a contradiction. Therefore f(z) = 0 i s  a unique solution, and + ( x ) ,  and likewise 6(z), are 

antisymmetric functions. 

17 
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